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ABSTRACT. It is proved that the diophantine equation 31-x2 + 1 = y3
has exactly the solutions (x,y} = (0,1), (2,5), (~2,5) , by solving a
related Thue—equation, using the theory of linear forms in logarithms
and computational methods from diophantimne approximation theory.

1. INTRODUCTION

In 1983 Jannis A. Antoniadis conjectured, in comnection with a study of

imaginary quadratic fields with class number 2 and diophantine
equations, that the diophantine equation
31ex? 4 1 = y3 (1)

has only the sclutions (x,y) = (0,1}, (2,5), (-2,5) (cf. Antoniadis
[1983], Section 2.5). It is the aim of this paper teo prove this
conjecture.

The proof consists of three main steps. The first step is to reduce
equation (1) to a couple of Thue-equations, of which ome is trivially
solvable, and of which the other is

2o 6T+ Y =62 . 2)

The second step 1is to derive from the theory of linear foxrms in
logarithms an upper bound for the solutions of (2). This we do following
Tzanakis and de Weger [1987]. The third step is to reduce this upper
bound to a level that makes it possible to enumerate the possibilities
below this bound. We use a computational method from diophantine
approximation theory, based on a continued fraction algorithm, as a

two—-dimensional analogue of the multi-dimensional L3—1attice basis
reduction algorithm, following Tzanakis and de Weger [1987} (see alsc de
Weger [1987]). Thus we prove that (2) has only one solutiom: (X,¥) =
-7.3
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2. THE REDUCTION TO THUE-EQUATIONS

Let K = @(y/-31) . It has class number 3 , and its rimg of integers is

o, = 7+ X 531-2 . The prime 2 splits in OK as (2) = p-p , say,
with p3 - |L 531 let %, v be a solution of (1), and put § =

(1+x-¥=31) . Equation (1) leads to an equation of ideals in GK :

(y)° =85 . (3)

A common divisor of b and B must divide B + b = (2) , and it must
be its own conjugate. Hence it cam only be (1) or (2} . Suppose that
it is (2) . Since b is a principal ideal, there exists a § € BK

such that b = (2)-(£) , and B = (2)-(€) , such that (&) and (&)
are coprime. It follows that y = 2-yl for a ¥y, € Z , and we find
(£)-(€) = p-iv(yl)B . Because (£) and (§) are coprime, we have (&)
= p-GS or (£) = §-u3 for some ideal & . This however is impossible,

since &3 and (¢) are principal ideals, whereas P and P are not,
We conclude that & and b are coprime, and from (3) it then

follows that they are cubes, b = @ and © = 53 , say. Representations
of the three ideal classes of UK are (1) , p and P respectively.

So there exists an o« € K such that a = {(a) , or & = p-(a) , or a =
P (a) respectively. The last two cases are equivalent, on taking
conjugates (note that the sign of =x is not important). So we consider
the first two cases only.

Suppose first that o = (@) . Them a € OK , and from b = (a3}
it follows that 1 + x-¥-31 =~ ia3 . Without loss of generality we may
neglect the #—sign. Put a = utv-y-31 for u, ve Z . Then

2

3 2 2 3
1+XH/“—311=U.—23‘U‘V+3'H'Vg3l‘v.m’

and equating the real parts yields the Thue-equation

u3 - 93-u-v2 = 8

It follows that u | 8 , and by checking the few possibilities, we find
that only (u,v) = (2,0) is a solution. It leads to the solution (X,¥y)
= (0,1} for (1).

Next suppose @ = P-(a) . Then Pa = (2-2) , hence 2-a € GK . Put

@ = 3+v; 2 for u, veZ . Then from b = o - p3-(03) we find

3
1+/-31] [utv-y=-31
1+ %x+y/-31 = i[ 7 -[ A
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Without loss of generality we may neglect the #-sign. Equating real and
imaginary parts we obtain

W - 93.u% v - 93.u-vP 4+ 961.v = 128 , (%)

u3 + 34u2-v - 93-u-v2 - 31-v3 = 128-x . {5)
The first one, equation (4), is a Thue-equation. Put

2.Z =31lv-u, Y=-u,

Note that it follows from (4) that u and v have equal parity, so
that Z € Z . Now (4) leads to

23 - 24-Z-Y2 + 8-Y3 = 496 |,
It follows that Z is even. Put Z = 2.X , X &€ Z . Then we find the
Thue— equation (2). In the next sections we show that (2) has only the
solution X = -7 , ¥ =3 ., This leads to Z = ~14 , u = -3, v =21,
Then (5) yields x =2 , and we find y =5 from (1). Of course, taking
conjugates in the above reasoning, we find the solution x =-2 , y =35
for (1).

3, AN UPPER BOUND FOR THE SOLUTIONS OF THE THUE-EQUATION

We study equation (2). Let ¥ be a root of the equation

5 - 694+ 1=0 .

In an Appendix to this paper we give numerical approximations to the

conjugates ﬂ(l) for i=1,2, 3. 3
Put L = Q(8) . Its discriminant i 837 = 37+31 , and its class
number is 1 (cf. Borewicz and Safarevic [1966], Tab. 7, p. 461). Its

ring of integers UL is generated by 1, ¥, ﬁz , and a system of

fundamental units is

€=~-8 , n=-4+ 69+ 3-62

(cf, Pohst, Weiler and Zassenhaus [1982], Tab. I.1, p.300, who give 1,

3, —h+ﬂ2 as generators for BL , and

- =98, 0 =214+ 149 + 6-(—4+62)
as a system of fundamental units, which data are equivalent to ours).

Note that N(e) = N(y) =1 .

The ideal (2) factorizes in UL into prime ideals as
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2 2
(2) = (=4 +9+9°) - (-1 +3.8~98"),

with N(—h+6+62) = 2 and N(nl+3-6—62) = 4 . The ideal (31) has the
prime decomposition

3Ly = ( =1 - 2:8 ) - (-1 + 48 )2,

with N(-1-2.8) = N(-1+4-8) = 31 . (We leave it as an exercise to the
reader to check these prime decompositions of (2) and (31) in DL 3.

1t follows that there are exactly two ideals of norm 62 , namely (¢1)
and (¢2) , where we choose
2 2
By o= (-4 +d+9 ) - (-1-28)=6~58~-3-9,

Py, = = (=b + 9+ 8% Y -« (=1l + 4B ) - ol - 739,

Note that N(¢l) - N(¢2) = 62 .
let X, Y€ Z be a solution of the Thue-equation (2). Put

B=X-7Y9 .

Then equation (2) leads to the equation N(B) = 62 for f € UL . The

only elements in OL with norm 62 are
a b
€0 Py,

where a, be Z and 4 e { 1, 2 } . Thus for some ¢ we have the
equations

. | ] N
X - Y-ﬁ(l) = e(l) -q(l) -¢£l) for i=1, 2, 3 .
Eliminating X and Y from these three equations we find
] -.[G(J)]a.[ﬂ(j)]b 1. -1 ‘[e(i)]a_[n(i)]b ' )
L.1 e(k) q(k) BL,j e(k) ﬂ(k)

where we choose ({i,j,k} to be the even permgtation of {1,2,3) for

which iﬂ(l)l is minimal, and

4D 5 BEPCING
RGN R NG IRNC

Note that in equation (6) the only variables are a and b . Put
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(D) R
B0 ™ O Bo i 7 n(k)

We study the linear forms in loparithms of algebraic numbers given b
AL,i = logISL’i} + a‘10g|p1,i| + b-log]pz,i!

for £ =1, 2 and i =1, 2, 3 . From (6) and the fact that 1 is

taken such that |ﬂ(l)| is minimal, it follows that [AL il is small,

However, we do not know a priori the values of £ and 1 , so we have

to check the six possibilities. (Note that 6£’1-6L’2-6£,3 = -1 and
. . = 1 , hence A + A + A = 0 , but this

#n,1%h,2""n,3 1,1 Z,2 1,3 T

information is not of any use). We need to be more precise about how

small iA{ i| is. We follow the line of argument from Tzanakis and de

Weger [1987] (referred to as "J-d¥f" in the sequel), Sections II.l1 and
I11.2, which is equivalent to de Weger [1987] (referred to as de¥ in the
sequel), Ch. 8, Sectioms 2 and 3, and we compute the constants YO’ Yl,

., C,, C,, ... that occur there,
172 2
Put YO =1, C1 = 4-62/|3-6(2) -6] < 41,93 , Cy = (ﬁ(3)~6(2))/2
> 1.097 , Y, = 168 . Then 7-d¥, Lemma 1.1 or de#, Lemma 8.1 yields:

if |Y| = 2 then I,B(_i)l < 41.93-|Y|_2 .
and min ( ]ﬁ<j);, ;ﬁ(k)| ) > 1.097-]¥] .
Put €, = |t9(3)—19(1)|/119(3)—6(2)l <2.22% , Y, = 168 . Then 7-d¥, Lewma
1.2 or de¥, Lemma 8.2 yields
if Y] = 169 then [A, | < 118.5-¥]7 .

Put A = max ( |a|, |b] ) . The minimal N[U;l] , defined as in J-d¥,
lLemma 2.1 or de¥#, Lemma 8.3, is less than 0.6104 , and the maximal

N[U;l] is less than 0.7776 . We have pu = i¢il)[ > 0.5416 , p =
|¢§3)| < 22,537 , G, < 9.953 , G, < 0.7776 . Hence, from J-d¥, Lemna

2.1 or de¥, Lemma 8.3 it follows that

if |Y| = 169 then A < 0.7776-log(9.953-]Y|]) .
J—d¥, Lemma 2.2 or de¥, Lemma 8.4 then yields, by C6 < 1.1677><105 and
3/05 > 3.858 , that
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if |Y| 2169 then |A, | < 1.1677x10° .62 8384 (7)

The solutions of (2) with |}¥]| =< 168 are easy to find by a small
computation. There is only one: X = ~7 , Y = 3 ., From now on we
therefore assume that |¥| = 169 .
The next step is to apply the theory of linear forms in logarithms,
to obtain a lower bound for |AL i| , as in Waldschmidt [1980], c¢f. also
H

I—d¥, Appendix 11, and de¥, Lemma 2.4. Consider the smallest algebraic
number field M  that contains all conjugates of ¢ , namely M =

Q(ﬁ(l),ﬁ(z)) It has degree 6. The algebraic numbers 5& 5 and By s
E :
are elements of this field. We are locking for the leading coefficients
of their defining polynomials. Some laborious computations yield as
defining polynomial for 61 i

]

3

H

119164 - (x041)+8931534 - (x4+x)+152559285 - (x+x) 4382415705 -x

with leading coefficient 119164 = 4-313 , and for 62 i

b (xP41) — 12- (x04x) — 3351 (x4x2) + 6722-%°

with leading coefficient & . This information enables us to compute the
absolute logarithmic heights of the SL i We have, by the fact that

-1 -1 -1 ! ; .
6&,1' 8&,2’ 86,3’ 66,1’ 5&,2’ 6£'3 are conjugates, the following
expression for this height, according to Waldschmidt [1980]:

3
1 -1 .
h(ab,i) = g-log[ao-jﬂlmax(|6£,j|,|6£'jf]] for i=1, 2, 3.

We give the following approximations of the §

4,1
61,1 = -0.40871087... , 62’1 = 0,96610162... ,
61,2 = —-51.130985%44,.. , 62,2 = 29.49993845... ,
61,3 = -0.04785195... , 62,3 = =0.03508779...

Hence for i =1, 2, 3 we find

h{s 1

1 1 -1 ’
l,i) - g.log[11916&-|8 '1|-|51,2|-]51,3]] < 3.2596 ,
- 1

1 1 -
h(s, ;) - g-log[h-lﬁz,ll-l52’2|-E62,3|] < 1.3592 ,

We also want to compute the heights of the The leading

Fh,i
coefficients of their defining polynimials are equal to 1 , since they
are quotients of umits, hence algebraic integers. The conjugates axre the
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t

p's and their inverses. We have approximately:
P1q - 0.07090891... , By 1= -0.10822894... ,
“1,2 = -0,93378623... , By 9 = 2106.31618305... ,
“1,3 = ~15,10259882... , By 3= 0.00438665...

Hence for 1 =1, 2, 3
1 -1 -1
huy 5 = g‘lOg[E‘ul,li‘["‘1,21'“‘1,3'] < 0.9050 ,
1 -1 -1
hipy 5) = "6'105[EF2,13'll‘z,gl'fi‘z,3|] < 2.5509 .
In Waldschmidt's bound we now take

max[h(pl i),logtpl 11/6] < 0.9050 =V, ,
max[h(pz O logls, i|/6] < 2.5509 =V, = VZ ,
N
3

max[h(Eé’i),loglﬁc,ii/S} < 3,2596 = V, = V

3
We have furthexr n =3 , hence e{n) =63, and D=6 . So if Aﬁ,i 7
0 then Waldschmidt [1980] (cf., 7-d#¥, Lemma 2.3) yields
iAL,iI > exp[—c7-(log A+ CS)J . (8)
where
c.=253.38.6°.0.9050.2.5509-3.2596 - Log (e 6+2.5509)<1 . 4669x102" ,

7

Cg = log(e:6:3.2596) < 3.9734 .

Since the right hand side of (6) cannot be equal to 0, it follows that
A£ i # 0 . Combining (7) and (8) we find:

A< 2.64x1028 .

4. REDUCING THE UPPER BOUND

In this section we perform the computationszghat make it possible to
reduce considerably the upper bound 2.64x10 for A = max(]|al,|b])
for the solutions of .

I8, ;1 < L.1677x10°.72 8982 9
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where

A_L'i = loglac,ii + a'loglﬂl’i[ + b.l()gi“z,i' ]

for the six cases £ =1, 2, i=1, 2, 3 .

The method that we use is that of J-d¥, Section II.3 (see also de¥,
Sections 3.8, 8.4). The linear forms have homogeneous parts with two
terms only, so that the approximation lattices will have dimension 2. Ve
also could have applied the well known continued fraction method of
Baker and Davenport [1969] (see also de¥, Section 3.3). However, we want
to show that the alternative method works as well in the one-dimensional
case. 3
In this case it is not necessary to apply the L -algorithm to find
reduced hases of the lattices, due to the fact that the lattices are
only two- dimensional, It is sufficient to apply some continued fraction
algorithm, with which one is able to find explicitly the shortest
nonzero vector in the lattice, This vector occurs as the first vector of
the reduced basis, whereas the second vector of the reduced basis is the
shortest lattice wvector independent of the first one.

For i = 1, 2, 3 we define the lattices Pi as spanned by the

column vectors of the matrices

1 o
Bi =
[Co'logif‘l,ii] {Co'log““z’i’]

Here, [x] means |x] if x>0 , and [x] if % < 0 , in other

words, rounded off towards zero. Note that the lattices Ti depend on

i only, net on £ . Further, put

0

IL--
pL —[00-10g16£,il]

The constant CO we take somewhat larger than the square of the upper

bound for A , as the heuristics prescribe (cf. de¥, Section 3.8). In
our case, we took initially C0 = 1064 , which is somewhat larger than
(2.64x1028)2

We computed the wvalues of 1ogiph i| and log[&L for h =1,

|
it
2, i=1,2,3, 4£=1, 2 to 65 decimal places behind the decimal
point, so that the lattices Bi are known explicitly. We give the

numerical wvalues in the Appendix. We computed reduced bases for these
lattices, which also are given explicitly in the Appendix. It follows
that the length of the shortest nomzero lattice vector hl i in all

three cases satisfies

:
j
|
|
|
K
|
|
|
1
]

¢
¢
¢
¢
¢
¢
¢
¢
;
:
!
z
]
E
|
]
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b, (| > 7.904x10°"
1
Let s, . € ﬂz be such that
.1
Bivsp s T Yy
We computed all S, 4 and give their wvalues in the Appendix. It

follows that for all their coordinates the distance to the nearest
integer is at least 0.02147 . Now we apply de¥, Lemma 3.5, which yields

min |xy, ;| > 27172 .5 02147-7.906x10°T > 1.199x10°° . (10)

xel’,
i
We now take the lattice point
a
E"‘ﬂ-' 3
ol I
where a, b are the coefficients of the linear form AL i Put

e [Co-log|65,1|] + a-[CO-log!pl’i|] + b-[GO-loglpzti]]

Then

hence (10) yields

2 2 30,2
a® + 2y ;> (1.199x1077)° .
28 :
By la| = A < 2.64x10 we obtain
30

EA{,iI > 1.198x107 .
On the other hand, by the definitions of A& i and AL -

a, . —10%%4, =1+ la] + bl =1+2a<5.20x10""

{,1 £,1

Hence

A, .| > 1.145x107>% .
4,1

Then (9) yields A < 23.29 , and it follows that we have the reduced
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bound

A =< 23,

We make a second reduction step. In stead of 1064 we now take CO =
108 . We use the same notation as above. We give in the Appendix the
reduced bases of the lattices Pi . From it we find that the shoxtest

nonzerc lattice vectors hl i all satisfy
3

Egl o> 1.454x104 .
i
We computed the vectors S 5 (see the Appendix), and found as a lower

bound for the distance of their coordinates to the nearest integer, the
value 0.00805. Hence de¥, Lemma 3.5 yields

1/2

min | x - ¥ .0.00805-1.454x10" > 82.76 .

> 2
hCI t1
1

Reasoning as above, we find

|A£ i| > [82.762 - 232)1/2 > 79,49

and

| AL i - 108-AL i | =1 + 2:A <47,

and hence

-7
Ay 4| > 3.249x007" .

Now (9) yields A < 6.897 , hence we find as a new reduced bound

A=x<$b

5. COMPLETING THE PROOF

We checked (9) directly for all 6-132 = 1014 remaining possibilities
(6 combinations of ¢ and i , and a and b running from -6 to 6).
We found that no solutions with A z & exist, and all 150 possibilities
with A < 2 are solutions of (9). With A = 3 there are 6 solutions of
(9). We checked all 156 solutions of (9) for (6) also. It appeared that
only three survived this test: with £ =2, a=b =0, {1, 2, 3.
These are three 'conjugated’ solutions, corresponding to

x - v.o8 - ¢§i> for i=1, 2, 3,

E
i
z
i
1
!
;
@
]
;
}
s
J
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hence to X = -7 , Y = 3 , Thus this is the only solution of equation
(2).
This completes the proof of Antoniadis’ Conjecture on equation (1).
The computations were performed on the IBM 3083 computer of the
University of Leiden, and took less than 4 seconds.

APPENDIX

The values of 6(1) for 1 =1, 2, 3 to 75 decimal places:

PSS _2. 52891 79572 94361 73372 64844 38865 53257 69735
49113 59246 53685 00933 11868 10223 90756....

PO 0. 16744 91911 08535 15627 44105 99528 43297 85089
86085 27948 83062 07715 60581 87728 49272....

PACO N 2. 36146 87661 85826 57745 20738 39337 09959 84645

63028 31297 70622 93217 51286 22495 41483....

The values of log]ph i[ for h=1, 2, i=1, 2, 3 to 65 decimal

places:

logipl 1|= -2, 64635 90944 04415 62204 535390 06582 18159 26077
’ 78380 15356 35680 49943 56138....

log|pl 2| = ~0. 06850 77423 86218 02662 99686 62994 38201 79350
! 33403 89661 00010 49667 91314....

log|p1 3[ = 2. 71486 68367 90633 64867 55076 69576 56361 05428
! 11784 05017 35690 99611 47452....

logl.u.2 l[ - -2, 22350 64735 35357 12700 57608 87706 40480 19209
! 27263 75564 96644 19231 53092....

1oglp2 2E = 7. 65269 58158 27467 60637 38606 30930 52800 33798
' 11234 52534 95207 79728 65409....

10g|p2 31 = 5. &2918 93422 92110 47936 80997 43224 12320 14588

83970 76969 98563 60497 12317....

The values of 1ogi§L i| for £ =1, 2, i =1, 2, 3 to 65 decimal

places:

log|é

1 l| = -0. 89474 72881 91695 83708 76423 16001 85407 12222

60304 72711 47615 33405 82001..
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Log|s, ,| = 3. 93439 06821 81768 88719 61134 86564 67126 03241
' 73955 28337 87981 07102 61076. ...
Logls, 4| =  -3. 03964 33939 90073 05010 84711 70562 §1718 91019
‘ 13650 55626 40365 73696 79074. ...
logls, | = 0. 03448 62492 75182 03237 40083 49465 38067 86943
; 78373 89474 44074 60763 51767....
log|s, ,| = 3. 38438 81770 33663 95098 90345 70330 28357 45343
; 27786 36047 35461 48164 53567....
logls, 4] = 3. 34990 19277 58481 92761 50262 20864 90289 58399
; 49412 46572 91386 87401 01800. ...
The reduced bases | bl i Qz 5 } of the lattices [, , and the vectors
s, . for £=1,2 and i=1, 2, 3, with G, = 10
£, 1 0
[ —47822301237569994766642004982086
h =
1.1 | 120453456747207984447278601575495
C _165805295209341977538930622379591
b, . = .
2.1 | —47326116097043950103119883594474
[ 66720668467630283414740091997708 , 4425596026. . . .
§. £
1.1 | ~19243872170683709305782243175066.9785202537 . . . .
[ 2 571615063770394620899432459411, 4029118359 . . .
.§' ==
2,1 ~741.716662857046578127155251645 . 2390706466 . . .

So E§1 l| > l.295x1032 , and the least distance to the nearest integer

of the coordinates of s and s is 0.02147....

1,1 =2,1

209846738140685643311301125918206 }

—140257531056831858189008066451436
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[ =194152876340341550054337467123873
h =
2,2 | -234912181680647399054822955079977
[ 99817539593350899044991285638018.4089281600. . . .
s . =
1,2 | 107886040566173869862653140029660. 8520812518.. . . .
© 85863689742420724059713848630901 . 5129405558 . . ..
-S_ £
2.2 | 92804266188597122762894378820080. 6164380428 . . . .

So lhl 2E > 2.524x1032 , and the least distance to the nearest integer

of the coordinates of 51,2 and §2'2 iz 0.14791....
[ 65484975953224197315914841.064357
1.3 | 44270169714183543870016057661119
[ —516492677609308868582635043174615
b, . =
2,3 479906642272754787848303899199678
" 2891690557390972839776273599000179. 5509538485, ... )
§ ==
1,3 36663111564604379053368211705795 . 8407956084 . . . |
[ 31.8684744132740681332347366265805,2237662557. ... )
§ £
2,3 40405341083998751371850392908989 . 0820715015 . . . |
So |h1 3] > 7.904x10°F , and the least distance to the nearest integer
of the coordinates of 51,3 and §2,3 is 0.08207....

The reduced bases | hl 5 hz .} of the lattices I', , and the vectors

,i
s, . for £ =1, 2 and i=1, 2, 3, with C, = 10
L, 1 0

1

2992 14329
b, , = b, . =
1.1 ~14239 2,1 ~6123
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[ ~5766.0429799036. . . .

§' =
L1 | -1203.9919461142. . .
[ —222.2406238729. ...
w2,1 ~46.4054676968. . . .

So [hl 1| > 1.456x10" , and the least distance to the nearest integer

of the coordinates of §l,l and 52’1 is 0.00805....
[ 20107 22006
b = b =
1.2 | 11762 Z,2 ~25187

[ _11313.6865015626.... ]

71,2 10337.3759196091 . . . .
[ -9732.1059161620. . . .

Sy 97
; 8892.2772723925. . ..

So ]hl 2] > 2.329x104 , and the least distance to the nearest integer

of the coordinates of §1,2 and 52’2 is 0.10591....
[ -9975 19948
b = b -
1.3 | -20133 2,3 14166
[ -11168.2983592012.... ]
81,37
: 5584.7090501821. ... |
[ ~12308,2544081460. ... )
8y 37
' 6154 . 7442210375, ...

So Ihl 3i > 2.246)(104 , and the least distance to the nearest integer

of the coordinates of g and s is 0.25440....

1,3 2.3
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